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Introduction

A wide range of software exists for social network analysis. A recent review attempted to
compare some of the available packages, but found it difficult to do so fairly, due to the differing
emphases of the various authors (Huisman and van Duijn, 2005). That review showed, however,
that relatively little social network analysis software was available for platforms other than
Microsoft Windows, and that only three of the smaller, more specialised applications were free
software. Furthermore, most of the available software packages only provided a graphical
user interface (GUI), and so cannot be usefully automated for processing multiple networks;
similarly, many of them were conceived for use with relatively small social networks, and do not
handle large networks well. Two software packages, in particular, are sufficiently widely-used
that it is worthwhile to discount them here. UCINET (Borgatti et al., 2002) is a commercial
package for the analysis of social network data. It will only run on Microsoft Windows, and
only provides a GUI, making automation difficult. Furthermore, it is only designed to deal with
small networks (up to 32,767 nodes). On the other hand, Pajek (Batagelj and Mrvar, 1998)
is designed to deal effectively with large graphs, and has some support for automation. It
costs nothing, but is not free software (this distinction is discussed below). Additionally, it is
only available for Microsoft Windows. It can be made to run on GNU/Linux systems using a
Windows emulator, but that still restricts it to Intel i386-based hardware. This limits its utility
on all but the most recent Apple hardware, as well as most UNIX servers; specifically, all the
analysis presented in this thesis was performed on a Macintosh Powerbook G4 and/or a Sun
V440, neither of which can run Pajek.

Free software is not the same as software that costs nothing to acquire. Colloquially, free
software is “free” as in “free speech”, not as in “free beer”. More specifically, free software grants
its users freedom to run the program for any purpose, to study its workings and adapt them to
their needs, to redistribute copies to others, and to improve it and release such improvements to
the wider community. A widely-accepted definition of free software is the Debian Free Software
Guidelines1. Free software has several advantages that make it suitable for use for scientific
computing. Free availability means that results may be verified by other authors. The availabil-
ity of source code means that other authors may not only verify the results of any work, but
may also verify the workings of a piece of software. The freedom to modify and redistribute free
software enables enhancements of algorithms (and bug-fixes) to be disseminated to the wider
scientific community, and avoids duplication of effort. For these reasons, free software should
be considered the gold standard for applications used for scientific research. Accordingly, the
software for network analysis and disease simulation described in this chapter (and included
on a CD with this thesis) is released as free software under the GNU General Public Licence,
version 2.

The software described here allows a range of different network analysis techniques to be
deployed, networks to be stored in memory in three different representations, the generation
of networks according to different criteria, and the simulation of disease processes upon net-
works. It understands, and may output, networks in a range of formats understood by other
network analysis programs, is portable across a range of computing platforms, and is written in
ANSI C (Kernighan and Ritchie, 1988) conforming to the latest international standard for the
language, BS ISO/IEC 9899:1999 (“C 99”). It aims to combine efficient algorithms with code
that is well structured and easy to read (and hence maintain).

1Available online at http://www.debian.org/social contract#guidelines
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Library structure

The library functions and data structures are defined in a series of header files, which allows
the same definitions to be used by multiple source files. Many applications, however, need only
#include the gsalgs.h header, as this #includes gens.h, so giving an application access to the
complete set of functions available, and the general network structure interface. Applications
wishing to refer to the particular network representations (rather than the general interface)
may #include the header files g im.h (for integer matrices), g bm.h (for bit matrices) and
g al.h (for the list of adjacency lists) directly.

There are three common ways of representing a network with N nodes and E edges in
memory. The first of these is an integer matrix, which is an N by N array of integers. Edges
may be valued, and memory usage is order N2. A refinement of this approach is the bit-matrix,
which is a two-dimensional array of type unsigned char large enough to contain N by N
bits. In this representation, edges may not have value, but memory use is substantially less
(depending on the width of the integer type), although still of order N2. Finally, a network may
be represented by an array of adjacency lists (these being arrays of the nodes which are adjacent
to the node in question); memory use is of order E, but establishing whether an edge u → v
exists is slower, depending on the number of neighbours u has; on the other hand, enumerating
the neighbours of a particular node is faster than with the matrix-based methods.

These different representations are best suited to different tasks, but for many networks, the
particular representation used does not especially matter, and the user may not care which is
deployed. Accordingly, the library provides a largely object-oriented approach to the network
representations; networks are presented to the application as a general network structure, con-
taining a set of basic functions (described below); the available analysis and disease simulation
functions all accept one of these general network structures as an argument. This provides a
convenient interface for the application developer, with minimal computational overhead, as
well as allowing the developer to be more specific about which representation they desire if
they wish to be.

The general network structure

This structure is defined in gens.h as follows:

struct gennet{
const struct gennetvtable *vtable;

};

typedef int gtest fn(const struct gennet *g, const int x, const int y);
typedef int gset fn(struct gennet *g, const int x, const int y);
typedef int gsetval fn(struct gennet *g, const int x, const int y,

const int val);
typedef void gunset fn(struct gennet *g, const int x, const int y);
typedef int giter fn(const struct gennet *g, const int node, const int x);
typedef void gsort fn(struct gennet *g);
typedef void gfree fn(struct gennet *g);

struct gennetvtable{
const net desired t type;
gtest fn *test;
gset fn *set;
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gsetval fn *setval;
gunset fn *unset;
giter fn *next neighb;
gsort fn *sort;
gfree fn *free;

};

The struct gennetvtable contains a variable describing the type of representation, and then
a series of pointers to functions that perform basic operations: test() returns non-zero if an
edge exists between x and y, set() creates an edge between x and y (returning 0 if the edge
already existed, otherwise 1), setval() creates an edge of value val between x and y (it is an
error to call this function on anything other than an integer matrix network), unset() removes
the edge between x and y, next neighb() returns the next neighbour of node after x or −1 if no
such neighbour exists (this is useful for looping through the neighbours of a node), sort() sorts
all the adjacency lists of a network (and does nothing for the two matrix representations), and
free() frees all the memory associated with a network structure. As an example, the following
code fragment illustrates the use of the test function to see if there is an edge from node 10 to
node 20 in network g:

g->vtable->test(g,10,20);

The specific network representations

The library provides 5 specific network representations: the three described above, and two
special immutable cases: an empty (or “null”) network, and a complete (or “full”) network.
They all may be manipulated via the general network interface described above, and are imple-
mented in a similar way. As an example, the integer matrix representation is considered. From
g im.h:

struct intmatrix{
struct gennet general;
int n;
int **net;

};

The net member is the n by n integer array containing the network data (n being the number of
nodes). The general member is the general network structure discussed above, and its vtable
member contains a set of functions that understand the integer matrix representation. In C, the
address of a structure is the same as the address of the first member of that structure, accord-
ingly for a variable i of type struct intmatrix, i.general and i have the same address. This
means that functions dealing with specific representations and those dealing with the general
network interface can pass networks back and forth simply.

Internal and external node numbering

When a network is generated or loaded from a file, nodes are assigned numbers from 0 upwards;
these internal node numbers will typically be different from the node numbers in a data file
(referred to hereafter as external node numbers), unless it was generated by one of the output
functions of this library. Functions requiring an input node (i.e. dijkstra()) require that the
internal number of the desired node be given, and functions returning data about each node of
a network will also use these internal numbers.
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The edges load() function can supply data to facilitate the conversion between external
node numbers and internal node numbers. Specifically, the map[] array provides a convenient
mapping from external to internal numbers; the value of map[x] is the internal number corre-
sponding to the external node number x, or −1 if there is no such internal node. The revmap[]
array provides an analogous mapping from internal to external numbers, with revmap[y] being
the external node number corresponding to internal node y.

Available functions

Internally, functions that deal solely with the general network structure are kept in one source
file, whilst those that need to access internals of the various specific representations are kept
in another. For clarity, however, they are grouped in the header file gsalgs.h by the type of
function they perform, and they will be described similarly here.

Generation functions

struct gennet *bitmatrix create(const int n);
struct gennet *intmatrix create(const int n);
struct gennet *adjlist create(const int n);
struct gennet *fullgraph create(const int n);
struct gennet *nullgraph create(const int n);
typedef enum { G BITM,G INTM,G ADJL,G FULL,G NULL,G ANY } net desired t;
struct gennet *type create(const int n, const net desired t type);

These functions are used to create new network structures. In all cases, n is the number
of nodes in the resulting network. No edges are created by any of these functions, excepting
fullgraph create(), since the network resulting from this function always returns 1 when its
test() function is called. The function type create() creates a network of the type specified
in the type argument, which may take one of the 6 values specified in the declaration of the
net desired t type, except G ANY (G ANY may be passed to other functions discussed below to
indicate that the caller has no preference as to which type of network is generated).

struct gennet *poisson gen(const int n, const int e, const int sym,
const net desired t type);

struct gennet *barabasi gen(const int x zero, const int x,
const int t, const net desired t type);

struct gennet *dd gen(const int e, const struct degdist *d,
const net desired t type);

These functions generate random graphs according to three different models. For each func-
tion, type specifies the type of representation to be used (and can take any of the 6 legal values
for this type, including G ANY, although specifying G FULL or G NULL is meaningless here, as nei-
ther of these network types can be usefully modified); pseudo-random numbers are generated
with the drand48() function, so srand48() should be used to seed the pseudo-random number
generator before calling these functions.

The function poisson gen() generates a Poisson or Erdős-Rényi random graph with n nodes
and e edges; if sym is non-zero, then the resulting edges are symmetrical (i.e. both a → b and
b→ a are generated), which has the effect of creating an undirected graph. The algorithm used
is näıve: two nodes are chosen at random, and an edge created between them if same does
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not already exist; this process is repeated until e edges have been generated. This approach
performs as well in practice as more complex algorithms (Batagelj and Brandes, 2005).

The function barabasi gen() generates a scale-free network, using a preferential attach-
ment model. Initially, there are x zero nodes and no edges. For t iterations, a node is added,
and x (which must be less than or equal to x zero) edges made between it and the existing
nodes with a probability based on the degree of those nodes (Barabási and Albert, 1999). This
results in an undirected graph with x zero + t nodes and x × t edges. The parameters of this
function are discussed in more detail on pages ??–??.

The function dd gen() generates a network with a two-dimensional degree distribution
described by the structure d (the structure of which is not relevant here), which results in a
network with e edges. The algorithm used is DEGDIST-GEN, which is described on page ??.

struct gennet *dyad rewire(struct gennet *g, const int n,
const dyad count *dc);

This function rewires the network g to match the dyad census dc, using the algorithm
REWIRE-STEP discussed on page ??. This preserves the two-dimensional degree distribution,
and number of nodes and edges in the original graph. The resulting network is in the adja-
cency lists array representation; if the original network is not, then it is left untouched, and a
new copy in the adjacency lists array form generated; the caller must remember to free() the
original network if necessary in this case.

Simulation function

void sir net(struct gennet *g, const int n, const int istart,
const double risk, const int remain, const int t,
FILE *out);

This function performs a discrete-time stochastic SIR simulation of disease upon the network
g, which has n nodes. Initially, istart nodes are infected, and at each time point, every edge
from an infectious to a susceptible node has a chance risk of transmitting infection. Nodes
remain infectious for remain iterations, and the simulation runs for t iterations, or until the
infection has died out, whichever is sooner. Output is written to out. The algorithm employed
is SIMULATE, discussed in detail on page ??.
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I/O functions

struct gennet *edges load(FILE *f, int *size, int **map, int *maplen,
int **revmap, int *edges, int *dup,
const int bi, const int sort,
const net desired t type);

struct gennet *dl load(FILE *f, int *size, const int binary,
const net desired t type);

These two functions read in network data from f, and if size is non-NULL, set the integer
pointed to by size to be the number of nodes. As above, type specifies which representation to
use.

The function edges load() reads in a network expressed as a list of edges. Formally, each
line should consist of two integers separated by any quantity of whitespace, but should not
consist of more than 1023 characters. If map is non-NULL, then a pointer to an array describing
the mapping from node numbers in the input file to the internal node numbers is placed there
(the application is then responsible for freeing the associated memory), if maplen is non-NULL,
then the integer it points to is set to the length of the map array, and if revmap is non-NULL, then
a pointer to an array describing the mapping from internal node numbers to the node numbers
in the input file is placed there (and again the application is then responsible for freeing the
associated memory). If edges and dup are non-NULL, then the integers they point to will be set
to the total number of edges read in, and the number of those which are duplicates, respectively.
The number of edges in the resulting network may be calculated as edges − dup. If bi is non-
zero, then the edges are bidirectionalised, equivalent to generating an undirected network.
Note that in this case, the edges a → b and b → a will be considered duplicates of each other.
If sort is non-zero, then the adjacency lists will be sorted (if another network representation
is specified, this argument has no effect); this is desirable in nearly all circumstances, as many
other library functions perform better if the network has been sorted. If type is G ANY, then the
resulting network will use the list of adjacency lists representation. The following pseudocode
describes the key part of the algorithm used:
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EDGES-LOAD(file)

1 max ← −1
2 min ← 0
3 n← 1
4 for line in file
5 do PARSE(line,from,to)
6 if from = to or − 1 = from or − 1 = to
7 then continue
8 big ← maximise(from, to)
9 small ← minimise(from, to)

10 if small < min
11 then map[small . .min]← −1
12 min ← small
13 if big > max
14 then grow(map,max )
15 if min > max
16 then map[min . . big ]← −1
17 min ← small
18 else map[max . . big ]← −1
19 if map[to] = −1
20 then map[to]← n
21 ADD-NODE(G, n)
22 n← n + 1
23 if map[from] = −1
24 then map[from]← n
25 ADD-NODE(G, n)
26 n← n + 1
27 G[map[from]][map[to]]← 1

Essentially, an array map[] is maintained, such that the value of map[x] is the internal node
number corresponding to node number x in the input, or −1 if that input node has yet to be
allocated an internal node number. The complication with this approach is that whilst allocating
a large array is quite a quick operation, assigning −1 to every member is time-consuming; an
optimisation is therefore employed, where the highest and lowest node numbers yet observed in
the input file are stored, and new areas of the map[] array allocated and assigned to only where
necessary. This substantially increased the speed of loading input files from RADAR, where the
individual node ids are high.

The first three lines set initial state. Then, the following procedure is followed for every
line of the input file. It is parsed, and if it represents a self-loop, or a movement to or from
location −1 (the unknown location), it is abandoned, and the next line processed (lines 5–7).
Then the two nodes involved (to and from) are compared with the highest and lowest nodes yet
encountered. If a lower node number than previously encountered is found, then all elements
of the mapping array between the new minimum node number and the previous minimum are
assigned the value −1 (lines 10–12); if a larger node number is encountered, then the map[]
array is grown to encompass this, and then the elements between the old and new maxima
are assigned the value −1 (lines 13–18). Lines 16–17 are a special case to deal with the initial
conditions (when min will be the smaller node number from the first input line, and max will
be −1); they assign −1 to all the elements between the two node values from the first input
line, and set min to the value of small . Then both ends of the new edge are looked up in the
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mapping array, and if they have not been encountered before (i.e. the corresponding map[]
element is −1), then new nodes are added to the network G, and map[] updated (lines 19–26).
Finally, the new edge is added to the network (line 27). Some details of the algorithm (such as
error checking, and keeping a count of edges and duplicates) have been elided for clarity, but
they are routine.

The function dl load() is a simple parser of UCINET’s “DL” file format (Borgatti et al.,
2002), specifically it requires the “whole network” format, with labels removed. If binary is
non-zero the function assumes that the input data is dichotomous (i.e. that edges in the input
network are unweighted). The function parses the header line from the DL file, establishes the
number of nodes, and from that calculates the size of each subsequent line. It then reads in
each line, and sets the edge values indicated. If type is G ANY, an integer matrix representation
is generated.

int dl output(const struct gennet *g, const int n, FILE *f);

This function outputs a network in UCINET’s “DL” file format, specifically the “whole net-
work” format, with labels removed, to f. The argument n is the number of nodes in the network.
It returns −1 if any of its fprintf() calls fail; the caller should inspect errno for the reason
why.

int dd output(const struct degdist *d, FILE *f);

This function outputs a two-dimensional degree distribution described in d to f; each output
line contains the indegree and outdegree of a node (as integers), separated by a single space
character. Return value is as dl output(). Note that the ordering of the nodes is by internal
number - the first line corresponds to node 0, the second to node 1, and so on.

Analysis functions

int *dijkstra(const struct gennet *g, const int n, const int start);
long double msp(const struct gennet *g, const int n);

These functions relate to the calculation of shortest paths. The function dijkstra() calcu-
lates the shortest path to every node in a network g with n nodes, from an initial node start
(which must be an internal node number), using Dijkstra’s shortest-path algorithm, modified to
use a Fibonacci heap, giving it a running time of O(N log N + E) (Cormen et al., 1989). The
return value is an array of n elements, containing the distance from start to each node in the
network (or INT MAX if the nodes are disconnected), the nodes being ordered according to their
internal node numbers. The function msp() calculates the mean shortest path between all pairs
of nodes on a network, making use of dijkstra(). In the case of a disconnected network, it
ignores pairs of nodes which are not connected (i.e. the number of pairs of nodes considered
when calculating the mean is reduced by one).

double *between(const struct gennet *g, const int n, const int normalise);

This function calculates betweenness centrality on an unweighted network g; if normalise is
non-zero, then the resulting value is scaled to enable comparison between networks (Freeman,
1979). The return value is an array of n elements, containing the betweenness centrality value
for each node in the network, ordered according to their internal node numbers. The algorithm
used runs in O(NE) time (Brandes, 2001). If the input network is undirected, then the result
needs to be divided by 2.
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double cluster(const struct gennet *g, const int n, const int exclude);

This function calculates the clustering coefficient over the network g with n nodes; it may
be used on either directed or undirected networks. Considering each node in turn, it calculates
the number of edges between the neighbours of that node; the clustering coefficient for that
node is then calculated, and added to a running total. Finally, the running total is divided by
the number of nodes. The exclude argument determines how the edge case of nodes with only
one neighbour is handled. If it has value 0, then such nodes are treated as having a clustering
coefficient of zero, so they contribute nothing to the running total, which will be divided by
the total number of nodes in the network, as per the definition of clustering coefficient (Watts,
1999). If it has a non-zero value, however, then such nodes are excluded from the final division
(i.e. the running total is divided only by the number of nodes in the network with more than
one neighbour). This behaviour is solely provided to mimic the incorrect behaviour of UCINET,
a popular piece of social network analysis software (Borgatti et al., 2002).

struct degdist *dd(const struct gennet *g,const int n);

This function returns the two-dimensional degree distribution of the network g with n nodes,
by simply iterating through all the edges in the network.

void dyad census(struct gennet *g, const int n, dyad count *dc);
void triad census(struct gennet *g, const int n, triad count tc);

These functions calculate the dyad and triad census of the network g with n nodes, and store
it in dc and tc respectively. Both require a list of adjacency lists representation, and will convert
g to this representation if necessary internally (g is left unchanged).

The function dyad census() calculates the dyad census; rather than simply iterating over
every pair of nodes, it uses in-lists and out-lists for each node (i.e. the list of nodes which send
an edge to that node, and which that node sends an edge to). Starting with the second node
in the network, and considering only the members of the in- and out-lists of a node which are
smaller numbered nodes, M the number of mutual dyads the node participates in and A the
number of asymmetric dyads the node participates in can be calculated:

M = | in ∩ out |
A = | in4 out |

that is, M is the number of elements common to both in and out , and A is the number of
elements in one of in or out , but not in both. The dyad count structure is defined in census.h;
it contains three elements which are, in order, the number of mutual, asymmetric and null
dyads, as 64-bit integers.

The function triad census() uses an O(E) algorithm, so may not be suitable for very
dense graphs (Batagelj and Mrvar, 2001), since there exist O(N2) algorithms (Moody, 1998).
The triad count structure is defined in census.h; it is an array of unsigned 64-bit integers,
each member containing the count of a triad type. The triad types enumeration type (also
defined in census.h) describes the order of elements in this array, for example the element at
position T003 corresponds to the count of triad type 003 (three null dyads).

void strong component count(const struct gennet *g, const int n, FILE *out);
void weak component count(const struct gennet *g, const int n, FILE *out);
struct gennet *bidirectionalise(const struct gennet *g, const int n);
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The functions strong component count() and weak component count() calculate the size
of each strong or weak component in the network g with n nodes, and write them out, one com-
ponent to a line (its size, as an integer) to out. The function bidirectionalise() returns a ver-
sion of g with every edge made bidirectional; counting weak components is equivalent to finding
strong components in a graph that has been made undirected, so weak component count() calls
bidirectionalise() on its input, and passes the result to strong component count(). The
function strong
component count() uses an improved version of Tarjan’s algorithm, which deals better with
sparse graphs (Nuutila and Soisalon-Soininen, 1993). It is highly recursive, so on some oper-
ating systems it may be necessary to allow the stack to grow substantially for this function to
work on large graphs.

Portability

This software library has been written in ANSI C, according to the latest standard (BS ISO/IEC
9899:1999); it is expected that it should therefore be portable to any platform with a relatively
modern C implementation. Specifically, it has been tested on Solaris v9, Mac OS X, and Debian
GNU/Linux.

Validation

In addition to checking the output of the various routines by hand to ensure they are behaving
correctly, the clustering coefficient and betweenness centrality routines were validated against
an existing standard piece of social network analysis software, UCINET (Borgatti et al., 2002).

One hundred random Poisson graphs with 45 nodes and 490 edges (these numbers are based
on an unpublished study of communication within the department) were generated. AutoIt, a
software package for automating graphical user interfaces (Bennett et al., 2004) was used to
make UCINET calculate the clustering coefficient and betweenness centrality values for each of
the hundred networks. The same measures were calculated using the software library described
herein. A bash script was used to convert the outputs from the two pieces of software into a
common format, and then diff was used to compare the two sets of results. A PC running
Windows XP was used to run UCINET, whilst the software described here was run on both a
Sun V440 running Solaris v9, and a Macintosh Powerbook G4 running Mac OS X.

The software based on this library produced the same answers on both the V440 and the
Powerbook. The automation of UCINET was not robust, however, requiring significant manual
intervention to successfully analyse all one hundred graphs. As noted above, UCINET incorrectly
calculates the clustering coefficient; the cluster() function produces the same answers as
UCINET when its exclude parameter is set to 1. The results for betweenness centrality were
identical between the two sets of software, with the exception that UCINET scales its results
between 0 and 100, rather than 0 and 1, so its answers were 100-fold greater than those
produced by the between() function.

Discussion

Despite the difficulties in automating UCINET (limiting the latter’s usability somewhat), validat-
ing some of the functions written against their equivalents in UCINET was a valuable exercise;
it illustrated one of the problems of proprietary software as a scientific tool — that you cannot
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be sure exactly what it is doing, particularly regarding “edge cases” such as how to treat nodes
with only one neighbour when calculating the clustering coefficient.

The drive behind development of the library described here was the research work that
is presented in this thesis. The edges load() function was used to import network data from
RADAR, and poisson gen(), barabasi gen(), and dd gen() (the latter followed by dyad rewire())
were then used to generate model networks with similar properties to the RADAR network;
sir net() was then used to run disease simulations upon the generated networks. The func-
tions dd() and dd output() as well as dyad census() were used to analyse various of the
networks generated. These uses (and the results generated thereby) are discussed more fully in
subsequent chapters.

The software library presented here is a robust, portable library for scientists intending to
write social network analysis programs, particularly if they wish to tie this analysis into disease
simulations. It is to be released as free software along with this thesis; this will maximise its
utility to the scientific community, as well as enabling effective peer-review of the algorithms
deployed. It is designed to be readily extensible, which should facilitate its use in future research
programmes.
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